Interactions between abscisic acid and ethylene signaling cascades.

نویسندگان

  • N Beaudoin
  • C Serizet
  • F Gosti
  • J Giraudat
چکیده

We screened for mutations that either enhanced or suppressed the abscisic acid (ABA)-resistant seed germination phenotype of the Arabidopsis abi1-1 mutant. Alleles of the constitutive ethylene response mutant ctr1 and ethylene-insensitive mutant ein2 were recovered as enhancer and suppressor mutations, respectively. Using these and other ethylene response mutants, we showed that the ethylene signaling cascade defined by the ETR1, CTR1, and EIN2 genes inhibits ABA signaling in seeds. Furthermore, epistasis analysis between ethylene- and ABA-insensitive mutations indicated that endogenous ethylene promotes seed germination by decreasing sensitivity to endogenous ABA. In marked contrast to the situation in seeds, ein2 and etr1-1 roots were resistant to both ABA and ethylene. Our data indicate that ABA inhibition of root growth requires a functional ethylene signaling cascade, although this inhibition is apparently not mediated by an increase in ethylene biosynthesis. These results are discussed in the context of the other hormonal regulations controlling seed germination and root growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New interactions between classical plant hormones.

Research on the classical plant hormones continues to uncover fascinating interactions between these crucial regulatory compounds.Recent papers describe ‘crosstalk’ between the abscisic acid and ethylene signaling pathways in Arabidopsis, and how the nature of this interaction depends on organ type.Auxin has now been shown to promote the biosynthesis of active gibberellin in pea,by up-regulatin...

متن کامل

Update on Cross Talk between Gibberellin and Other Hormones Mechanisms of Cross Talk between Gibberellin and Other Hormones

It has always been clear that different plant hormones affect overlapping processes, such that the output of plant hormone action depends on specific hormone combinations rather than on the independent activities of each. In the last two decades, numerous components of the signal transduction pathways of various plant hormones have been identified, leading to the elucidation of partial or entir...

متن کامل

The role of abscisic acid in plant-pathogen interactions.

The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an a...

متن کامل

Mechanisms of cross talk between gibberellin and other hormones.

It has always been clear that different plant hormones affect overlapping processes, such that the output of plant hormone action depends on specific hormone combinations rather than on the independent activities of each. In the last two decades, numerous components of the signal transduction pathways of various plant hormones have been identified, leading to the elucidation of partial or entir...

متن کامل

Nitric oxide and phytohormone interactions: current status and perspectives

Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2000